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Optimal Guidance for the Space Shuttle Transition
ROBERT F. STENGEL*

The Analytic Sciences Corporation, Reading, Mass.

A guidance method for the space shuttle's transition from hypersonic entry to subsonic cruising flight is presented.
The method evolves from a numerical trajectory optimization technique in which kinetic energy and total energy
(per unit weight) replace velocity and time in the dynamic equations. This allows the open end-time problem to be
transformed to one of fixed terminal energy. In its ultimate form, "^-Guidance" obtains energy balance
(including dynamic-pressure-rate damping) and path length control by angle-of-attack modulation and cross-range
control by roll angle modulation. The guidance functions also form the basis for a pilot display of instantaneous
maneuver limits and destination. Numerical results illustrate the ^-Guidance concept and the optimal trajectories
on which it is based.

Introduction

THE transition phase of the space shuttle's return from orbit
matches the hypersonic entry phase to the subsonic "cruise"

and landing phase. It is characterized by substantial variations
in aerodynamic coefficients and stability derivatives, the result of
large angle-of-attack changes and flight at supersonic and
transonic speeds. The importance of transition flight path control
is heightened not only by the requirement for unpowered landing
approach but by the navigational uncertainties which will prevail
as the spacecraft emerges from radio-frequency "blackout."
During the latter period of atmospheric entry, inertial estimates
of position and velocity will have been degraded by the passage
of time since de-orbit platform alignment, and ground-based
navigational aids will be obscured by aerothermal ionization.
Acquisition of terminal-area radio aids will reduce the naviga-
tional uncertainty, and the vehicle may be called upon to
perform ranging and cross-ranging maneuvers at this time.

The central problem of transition flight path control is to
manage the mechanical energy that is available following entry
in such a way that the destination is reached. Constraints on
load factor and dynamic pressure (which can be expressed as
functions of kinetic energy, potential energy, and angle of attack)
must not be exceeded, and stability and controllability must
be maintained. The transition should terminate in a trim-glide
flight condition, eliminating the need for special maneuvering
to dissipate excess energy while preserving sufficient energy for a
safe landing. The time allowed for transition is open, and the
dynamical equations are independent of time.

The significance of energy coupled with the secondary role
played by time suggests that a transformation of the variables
of motion will simplify the computation of flight paths, with a
requisite simplification of the optimization process. Replacing
velocity with kinetic energy and time with total energy allows
the altitude (potential energy) equation to be eliminated and con-
verts the open end-time problem to one of fixed final energy.
The reduced dimension of the trajectory problem increases the
plausibility of a dynamic programing solution for real-time
applications, and engineering approximations make such an
approach feasible for space shuttle guidance.

An energy method for calculating optimal planar trajectories
and a two-dimensional dynamic programing guidance function
have been presented recently1; in the sections which follow, this
development is extended to three-dimensional flight paths.
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Equations for steepest-descent optimization using near-optimal
stepping of angle-of-attack and roll-angle perturbations are
derived. The transition trajectory is initially described by its end
points, the starting and final state variables. The trajectory con-
necting these points must minimize the rate-of-change of
dynamic pressure, implicitly limiting maximum load factor and
dynamic pressure. This dynamic pressure penalty provides
damping of phugoid oscillations through a direct feedback of
kinetic-energy rate to angle of attack. Numerical results illustrate
a variety of optimal trajectories, and a three-dimensional
dynamic programing guidance function, which is the basis of
the "E-Guidance Law," is demonstrated. The guidance function
is shown to be of additional utility in providing a pilot display
of instantaneous maneuver limits ("footprint") and destination.

Development of Equations
Transformation of Variables

The equations of motion for the three-dimensional trajectories
considered here make use of the flat-Earth approximations-
glide range, cross-range, and altitude change during the transition
maneuver are small compared to the Earth's radius, and
velocity is decidedly suborbital. With the further assumption
of an exponential air-density profile [/>(#)], the equations for
velocity magnitude (V), flight path angle (y), altitude (H), range
(R), heading angle (£), and cross-range (C), which are illustrated
in Fig. 1, are

Fig. 1 Coordinate system for the space shuttle transition.
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V = -CDke~ftHV2/2-gsmy (1)
y = CL k e->* (V/2) cos <j> - (g/V) cos y (2)

H = Vsiny (3)
R = V cos y cos £, (4)

£ = - CL k e~ftH (V/2) sin 0/cos y (5)
C = V cos y sin £ (6)

The control variables in these point-mass equations are roll
angle ($) and angle of attack (a); a enters through the aero-
dynamic coefficients for lift and drag (CL and CD). Additional
variables are the inverse scale height of air density (/?), the
gravitational constant (g), and the density ratio per unit length
(k = Spjm), which combines reference area (S), vehicle mass
(m), and reference air density (p0).

It is convenient to transform range and cross-range into a
distance from the destination and an azimuth angle, which is
referenced to the original heading angle. Denoting final values
by the subscript'//' the range-to-go and cross-range-to-go are

Rgo = Rf — R (1)
Cgo = Cf-C (8)

while the distance-to-go (Dgo) and destination azimuth angle
fa) are

^go = [^go2 + Cgo2]X; 2 (9)
17 = tan"1 (Cgo/Kgo) = cos'1 (Kgo/Dgo) (10)

The differential equations for the time rate-of-change of Dgo
and r\, can be written as

Dgo = Fcosycosfa-£) (11)
>) = Kcosysinfa-£)//)g( (12)

As indicated by Fig. 1, the term fa — £) is the angle between
the line-of-sight to the destination and the longitudinal axis of
the vehicle,! i.e., the horizontal "look angle" or azimuth-to-go
(Ago). The solution for horizontal position is seen to be
independent of the actual values of Y\ and £, relying only on their
difference for dynamic effect.

The specific kinetic energy, or kinetic energy per unit weight,
is

K = V2/2g (13)
which possesses the time-derivative

K = VV/g (14)
hence, V and V can be replaced by K and K in the system
equations, yielding the following set :

K = -CDke-^H(2gK3)1/2-(2gK)1/2smy (15)
y = CLke-^H(gK/2)1/2 cos (l)-(g/2K)112 cosy (16)

H = (2gK)l'2smy (17)
Dgo = - (2gK)lf2 cos y cos fa - £) (18)

«J = - CL k e-*H (gK/2)1'2 sin 0/cos y (19)
i/ = (W2 cosy sin fa-£)//)go (20)

Since these equations have no explicit dependence on time,
their number can be reduced by redefining the independent
variable to be one or a combination of the state variables. The
new independent variable should be monotonic in time on a
typical trajectory to avoid singular points and multivalued
control histories. Occurrence of a phugoid oscillation (the long-
period interchange of kinetic and potential energies) could
prevent the first three variables from individually meeting this
requirement, while choice of one of the remaining three variables
introduces an artificial dependence on lateral state in the
longitudinal equations. The specific total energy, or total energy
per unit weight

(21)
meets the requirements for a new independent variable. E must
be monotonic in gliding flight, as
_______ £ = K + H (22a)

t This assumes zero sideslip angle.

which, from Eqs. (15) and (17) is
£ = - CD k e-*H (2gK3)i/2 (22b)

The individual terms on the right side of Eq. (22) are always
positive; hence, total energy is always dissipated by aerodynamic
drag. The derivatives with respect to the new independent
variable are

d()/dE = [d()/dt]/E = ()' (23)
and the differential equation for either K' or H' can be eliminated
in favor of Eq. (21). Eliminating the H' equation, the dynamic
equations become

K' = l + siny/CD/z (24)
y' = (- CL cos 4>+cos y/p)/2CD K (25)

D'go = cosy cos (r!-t)/CDii (26)
£' = CL sin cf)/2CD K cos y (27)

rf = - cos y sin fa - £)/Dgo CD n (28)
where \JL is a measure of the aerodynamic forces

H = ke-PHK = q/(W/S) (29)
with q — dynamic pressure and W = mg.

Two simplifications might be considered at this time. Replacing
Eq. (28) with a relation for A'%0 and assuming that A'%0 is
negligible yields a transcendental solution for roll angle

sin 0 = - 2 sin ̂ go/Dgo cos2 yCL ke~ftH (30)
This result suggests a roll control law which steers to the
destination while minimizing the rate-of-change of the azimuth-
to-go. Another simplification, which is adopted for the remainder
of the paper, is that the flight path angle can be assumed
small during the transition, leading to cos y ~ 1 and sin y ~ y.
This assumption is borne out by previous results,1'2 and it
provides a modest reduction in the number and complexity of
the partial derivatives required for variational optimization.
Equations (24-28) can now be expressed as

x' = f(x,a,0) (31)
where xt = K, x2 = y, x3 = Dgo, x4 = £, x5 = rj, and

A = l+X2/CDiJL (32)
/2 = [- CL cos<l> + l/ti/2CDXl (33)

(34)
(35)
(36)

The partial derivatives of these equations, which are necessary
for the optimization, are well-behaved except at the destination
(x3 = 0) or in flight at vanishing dynamic pressure (/i = 0), in
which case energy dissipation is negligible.

Equations and Methodology of Optimization

Optimization of the three-dimensional dynamic equations
proceeds according to standard methods of variational calculus.
The control which minimizes a cost function consisting of integral
and terminal penalties is to be found. The cost function,
augmented by the dynamic constraints [Eq. (31)], is

f£/
'-XJ +

JE0

,u)-x']} dE,

E0 > Ef (37)
where the end points are fixed, Q is a constant, diagonal
matrix weighting the squared-error between the achieved and
desired final state, & is a penalty function whose integral must
be minimized, A is the vector adjoint of x, and the control vector is

(38)

The state vector is a function of E through Eq. (31), while
A(£) is found from

l'(F\ — —f T(F\1(F\— (/? T(F\ C^Q\\ / — x \ ) \ ) °^ x \ ) \ /

with
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-xD) (40)
Having obtained a trajectory from Eq. (31) with an initial

control profile u(£), the angle-of-attack and roll-angle histories
are improved on succeeding iterations by the perturbation

Su(E) = s (41)

where s and a are near-optimal step-sizes obtained by a two-
dimensional search of J(s, a).

Terminal distance corrections are most readily made by vary-
ing the control early in the trajectory, yet difficulty has been
experienced in achieving this obvious correction from the
optimization equations. The problem has been overcome by
imposing ramp-function weighting on e when the terminal
distance error is large. The ramp function equals 1 at E0 and
0 at Ef; therefore, control corrections are attenuated as the
terminal point is approached. This allows large changes in
terminal Z)go with little change in final V, y, and £, which are
primarily determined by the control profile in the latter portion
of the flight.

The integral penalty function (<£} introduces trajectory damp-
ing. The trajectory damping term penalizes the rate-of-change
of dynamic pressure (q), which is

«' = «[(|8x1 + l)/1-/»x1] (42)
where q = p0e~p(f~*Jgxlt and /i is found from Eq. (32). The
penalty function is then

& = Cq'2, c < 0 (43)
Equation (42) shows that & is primarily a kinetic-energy-rate

penalty which is weighted by air density. The damping penalty
establishes a direct relationship between acceleration along the
velocity vector and a, and it is independent of both 4> and the
other state variables. The principle of damping the trajectory by
longitudinal motions alone is extended to the ^-Guidance
method, which is presented later in this paper.

In the numerical results which follow, terminal K, y, and Dgo
errors are weighted in Eq. (40), and 7/go is open. The transforma-
tion from t and V to E and K provides implicit weighting of
terminal altitude error, as Ef is fixed, and the Kf error is
minimized; hence, from Eq. (21), Hf error is minimized as well.
The use of polar coordinates to describe horizontal position
allows the most important navigational error to be described by
one terminal variable (Dgo/) rather than two (Rgo/, Cgo/).

Application to Transition Flight Paths
The lift, drag, and mass characteristics upon which the

following optimal trajectories are based pertain to a delta-winged
configuration for the space shuttle orbiter.3 The maximum
hypersonic L/D of 2.1 occurs at a = 13.8°, while the subsonic
L/Dmax = 4.3 and occurs at a = 8.4°. The transition phase begins
in the hypersonic regime (M = 8.26, H = 150,000 ft, y = 0°) and
ends in a subsonic trim glide (M = 0.9, H = 40,000 ft, y = - 18°).
Initial specific total energy (1.15 x 106 ft) consists primarily of
kinetic energy, whereas the terminal specific energy (5.18 x 104 ft)
is largely due to the terminal altitude.

The trajectories demonstrated in this section end at ranges of
200 to 402 naut miles from the starting point, and cross-range
varies from 50 to 150 naut miles (detailed results for two-
dimensional, planar trajectories are presented in Ref. 1). The
data are computed using the flat-Earth model presented in an
earlier section and are compared briefly with round (non-
rotating) Earth trajectories for the same control profiles, which
are scheduled as functions of E. Initial condition and mass-
variation effects are presented.

General Characteristics of the Trajectories
Given the nominal initial conditions just described, the space

shuttle orbiter can fly to any destination within the "footprint"
illustrated in Fig. 2. This near-optimal envelope of reachable
points has been determined by modulating a (as a function of

-300 -200 -100 o 100
CROSS-RANGE, nmi

Fig. 2 Ground tracks of 15 transition trajectories calculated with
flat-Earth assumptions. Maximum load factor (0's) and dynamic pressure

(psf) shown in parentheses next to each terminal point.

Mach number) such that the lift-drag ratio is always maximized.
The roll angle (</>) has been held constant until a heading angle
(£) of 90° is obtained, at which time' $ is nulled. The vehicle
descends to the nominal specific energy of 5.18 x 104 ft, corre-
sponding to final velocities and altitudes of about 800 fps and
41,500 ft. The round-Earth model used in generating this foot-
print produces longer rangeandlower qmaK than the corresponding
flat-Earth trajectories.

Fifteen optimal trajectories within this footprint have been
computed; their ground tracks are illustrated in Fig. 2. The
zero-cross-range terminal point at 402-naut miles-range is a flat-
Earth L/Dmax trajectory, whose round-Earth counterpart has
20-naut miles-greater range. The remaining 14 cases were
computed with dynamic-pressure-rate damping. The preponder-
ance of qmax = 187 psf in Fig. 2 indicates that, in each case, the
terminal q is the maximum value. Maximum load factor occurs
at or near the starting point of each trajectory; hence, those
cases with shorter path length have commensurately higher
maximum load.

A summary of energy distribution on the transition flight
paths is offered by the altitude-velocity (H-V) profiles of Fig. 3,
which effectively plot potential energy against kinetic energy
[Eqs. (13) and (21)]. The contours of constant E and q provide a
background against which the most significant dynamic effects of
terminal point can be evaluated. Flights to short-range terminal

- E = 2 x l 0 5 F T -

X
sr = 5X105FT

-R =395 nmi

"•-•••- R =200 nmi,
Cross - Range ( C ) = 150 nmi

-—._ R = 300 nmi, C = 150 nmi
----- R =390 pmi, ,C = 5,0 nmi, ,

VELOCITY, fps xlO"3

Fig. 3 Altitude-Velocity profiles for several transition trajectories.
Short range trajectories require early deceleration and, therefore, high
a. This leads to an initial increase in altitude. Long path-length trajectories
require high kinetic energy at a fixed level of specific energy; hence,

dynamic pressure is higher.
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Fig. 4 Control histories for four transition trajectories. Angle-of-attack
(a) trends can be related to the H-V trends seen in the previous figure.
Reference to the next figure indicates that roll angle (</>) is a straight-

forward function of azimuth-to-go.

points necessitates early deceleration, which is obtained by
increasing a. This not only leads to increased drag but to
increased lift as well, causing altitude to increase. The reduction
in dynamic pressure has a more direcbeffect on attitude control
using aerodynamic surfaces—the return to low q results in
sluggish response to surface deflection, introducing a possible
need for continued use of the reaction control thrusters used
earlier in the entry and during orbital flight. Matching the H-V
profiles with their corresponding ground tracks in Fig. 2, the
energy balance during transition is seen to be a stronger function
of path length than of the amount of path curvature. For the
200-naut mile case shown in Fig. 3, the phugoid oscillation
which proceeds from the altitude increase is well-damped by a
modulation during the ensuing flight. Increasing the path length

= 400

£ 300
UJ
g 200

1 100
0

———— Range (R) -200nmi,
Cross Range (C) -50 nmi

— —— R • 390 nmi, C « 50nmi

Increasing Time
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a) Distance-to-go History
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b) Azimuth-to-go History

-6

Fig. 5 Position histories for four transition trajectories. Distance-to-go
(Dgo) trends are similar to the H-V and a trends of previous figures.
The convergence of azimuth-to-go (Ago) indicates a "straight-in" final

approach to the destination.

to the terminal point forces a descent into regions of higher
dynamic pressure. For a given specific energy, the ratio of
kinetic-to-potential energy increases as terminal distance in-
creases. The H-V profiles coalesce into a single curve as the
final point is approached.

Details of four trajectories which constitute the extremes of
the nine out-of-plane cases considered in this section are pre-
sented in Figs. 4 and 5. High and low terminal ranges are
combined with high and low cross-ranges. The control angles
(Fig. 4) and position variables (Fig. 5) illustrate the obvious
separation of a and </> control functions. Angle of attack is
principally an energy and distance control, while (j) determines
the lateral state.

The path length trends evident in H-V can be seen again in a
(Fig. 4a) and Dgo (Fig. 5a). The a-profiles for long path length
(jR = 390 naut miles, C = 50 naut miles and R = 350 naut miles,
C = 150 naut miles) are^virtually identical, as are the Dgo profiles.
In both cases a remains close to the L/Dmax profile except at
the end points. Variation at the final point is required to match
the specified Vf and H f . An initial a-"pop-up" is executed in an
attempt to minimize the inevitable dynamic pressure peak
associated with the long-distance transition.

The correspondence between 4> and Ago shown by Figs. 4b and
5b is clear. The similarity is explained by the fact that the rate-of-
change of Ago is small; thus, by Eq. (30), sin <j> is proportional
to sin ^4go. The undulations in </> for the 200-naut miles-range
cases are related to similar features in the a-profiles because the
(t>~\0 proportionality is weighted by CL, in turn a function of a.

Comparing these results with those for in-plane1 trajectories, it
is found that path length is the distinguishing parameter for
both in-plane and out-of-plane motion. The qualitative relation-
ship between E and time is the same for both two- and three-
dimensional equations: the logarithm of E decreases nearly
linearly with time, and the approximate slope is a function of the
final path length. Flight times for the 15 trajectories vary from
434 to 692 sec.

Effects of Selected Parameter Variations
The previous results have used a single set of initial conditions,

with constant mass. The effects of increased initial velocity,
positive initial y, and 10% mass increase are discussed in this
section. In each of the preceding cases, a new a-c/> set is
computed. Initial condition perturbations also are applied with a
fixed a-0 set, in order to evaluate the sensitivity of an optimal
solution to initial condition errors. The reference trajectory for
these runs has a final range of 350 naut miles and cross-range
of 50 naut miles.

Figure 6 presents altitude-velocity profiles for the first three
variations. Increases in V0 and y0 each tend to increase the path
length of the trajectory,tresulting in an early a increase and the
altitude increase which is characteristic of distance-shortening
trajectories. There is no significant change in the ^-profile as a
result of the V0 increase, but </> is about 5° greater during the

Range = 300 nmi,
Cross-Range = 50 nmi

-3VELOCITY, fps xlO

Fig. 6 Optimal H-V profiles for initial flight path angle (y), initial
velocity (F), and mass variations.
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Table 1 Effects of initial condition variations on a transition"

Case

Nominal
(flat-Earth)

Nominal
(round-Earth)

+ 500fps
- 500 fps
+ 3°
— 3°
+ 5000 ft
-5000ft

ARf
naut
miles

0.2

12.9

45.6
17.3
31.3

-5.5
16.1
9.4

AC,
naut
miles

0.3

-1.6

-6.6
3.3

-1.6
-1.2
-1.7
-1.4

9max
psf

187

177

176
178
178
176
175
182*

Load
factor

0's

1.9

2.0

2.2
1.7
2.0
2.0
1.6
2.4

" Range = 350 naut miles, Cross-Range = 50 naut miles. Maximum dynamic pressure
occurs at the final point; maximum load factor occurs at the initial point.

b Occurs at initial condition.

altitude increase when y0 — +3°. The H-V profiles for both cases
have returned to the nominal profile by the time that altitude
decreases to 100,000 ft. The 10% mass increase, which is
representative of the return payload deviations that can be
expected in normal operation, is dynamically identical to a 10%
decrease in air density. The mass increase improves the vehicle's
intrinsic ability to penetrate the atmosphere; thus an early a-
increase is necessary to preserve a near-nominal H-V profile.
The additional a is maintained to prevent an excessive q peak
at H = 125,000 ft, causing this case to fall behind in reducing
Dgo. Consequently, a must be reduced to improve L/D, causing
the average q to increase and the H-V profile to drop below
the nominal.

If the initial conditions are varied without changing the
control profile, there are appreciable variations in terminal
position, while the variations m V f , y f , £ f , and Hf are negligible.
Typical variations in the latter are about 1 fps, 0.1°, 0.3° and 10 ft
for the initial condition variations shown in Table 1, which
compares the effects on round-Earth trajectories. The excellent
convergence of the terminal altitude and velocity vector is the
result of scheduling a and 0 as a function of E (and, therefore, H
and V). Terminal position is not fed back by E-scheduling;
therefore, its dispersion is significant (see Table 1). Load factor
and q peaks occur at the extremes of the trajectories. Altitude
variation is seen to have the largest effect on these parameters.

A Dynamic Programing Approach to
Transition Guidance

Up to this point, discussion has centered on three-dimensional
transition trajectories, leaving unanswered the question of
guiding the vehicle during the actual flight, i.e., in "real-time."
Simply choosing a single optimal set of a(E)-(/>(£) is, of course,
inadequate, as the vehicle must be guided to a terminal point
which cannot be well-defined before the trajectory occurs.
Furthermore, variations in atmospheric and vehicle character-
istics and errors in deriving E from measurements of H and
V could allow unacceptable dispersions in flight parameters.

There are three alternatives for optimal feedback guidance.
The first is to execute a numerical optimization procedure, such
as the one described in this paper, in conjunction with "fast-time
integration" of the state and adjoint differential equations. The
second alternative is to obtain neighboring extremal solutions
for one or more optimal paths, resulting in a family of nominal
state, control, and feedback gain histories for the linearized
feedback guidance law. The third alternative, which is explored
in the remainder of this section, is dynamic programing. The
principal distinction between this and the second alternative is
that dynamic programing provides a nonlinear feedback law,
eliminating feedback gains at the expense of more nominal
paths.

A family of optimal transition trajectories constitutes an
autonomous field of extremals which can be used for nonlinear
feedback control. The theory of dynamic programing4 shows
that a unique optimal control vector associated with each point
in the extremal field can be defined. Hence, a and $ can be
precomputed as optimal functions of these variables and stored
within the flight computer. The present results suggest that two
three-parameter functions, in which the guidance commands
(aG and 4>G) are functions of Dgo, Ago, and E only, are sufficient

^-Guidance for Gliding Flight
A three-dimensional guidance scheme which uses nonlinear

functions of Dgo, AKO, and E to find aG and 0G is described, and
closed-loop guidance results are presented in this section. As
shown by Fig. 7, the nonlinear guidance functions are supple-
mented by dynamic-pressure-rate damping, in which a is
modulated to minimize phugoid oscillations. The diagram shows
that q' feedback brings in the state variables which are missing
in the guidance functions (K and y); in practice, q' also could
be derived from measurement of V.

In concept, aG and <£G follow the hypersurfaces defined by
*G = xG(Dgo,Ago,E) (44)

although q' damping .allows small variations as required. The
same functions can be used to predict the terminal point which
will result from the currently measured values of a and </>, using
the revised form

Dgop = D>,0,£) (46)
\OP = A^,^,E} (47)

The prediction assumes that an optimal a-0 profile is flown
from the current point, and it neglects the effect of q' damping.

In the numerical results which follow, the guidance functions
have been derived from the 15 optimal trajectories described
earlier, with Dgo and Ago determined from the actual terminal
points obtained in round- Earth computations; thus, the
guidance functions terminate at the nominal specific energy
with zero Dgo and near-zero Ago. The guidance variables are
constrained to the maximum and minimum tabulated values,
which (for these cases) converge to functions of E alone as the
end point is approached. Consequently, there are neither violent
terminal maneuvers nor precise homing with the guidance
functions used here. The most frequent result of these control
constraints is that lateral position error is not completely
nulled or that the terminal point is reached with surplus specific
energy.

Table 2 lists the significant parameters of seven round-Earth
trajectories to a range of 300 naut miles and cross-range of
150 naut miles using E-Guidance without trajectory damping.
The first case has nominal initial conditions, while the remaining
six cases have the initial condition perturbations used in Table 1.

Fig. 7 Block diagram of the ^-Guidance Law for gliding flight.
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Table 2 Flight parameters for trajectories to 300-naut mile range
arid 150-naut mile cross-range using £-Guidance without trajectory

damping

Case

Nominal
+ 500fps
-500 fps
+ 3°
-3°
+ 5000 ft
-5000ft

»»,•
naut
miles

0.04
0.01

69.02
0.25
0.17
0.13
0.06

A£/f
ft

1346
2169

1700
907
785

1370

vf
fps

852
850
822
849
854
849
852

4max»
psf

176
174
251
191
270
182
191

Load
factor,

0's

1.5
2.1
1.3
1.4
2.1
1.5
1.6

tion does remain in the damped case, suggesting that higher
feedback gain could be employed. The amount of damping
demonstrated here reduces the maximum peak-to-peak load
factor variation from 1.6 g to 0.4 g. Ranging control for the
damped case is better than that of the undamped example, with
a minimum tabulated Dgo of 0.04 naut miles and excess specific
energy of 918 ft.

^-Guidance is relatively insensitive to vehicle mass or air
density variation. A 10% increase in vehicle mass decreases the
maximum load factor accordingly and has negligible effect on
maximum q. Terminal accuracy is adversely affected by the <f>
constraints of the guidance functions used here: the maximum
final Dgo for an initial perturbation of + 5000 ft is 1 naut mile,
although the average for the remaining six cases is 0.27 naut
miles.

In a departure from earlier convention, the terminal point is
defined as the tabulated point of closest approach to the destina-
tion. As before, the maximum q and load factor occur at the
end points. Table 2 indicates that terminal convergence is
obtained in all cases which have sufficient energy to reach the
destination. The 11% reduction in specific energy which results
from an initial velocity perturbation of — 500 fps prevents this
case from meeting its objective.

Adding trajectory damping has little effect on guidance con-
vergence, but it does smooth the flight path and dynamic
pressure profiles. Figure 8 presents a comparison of E-Guidance
flight paths with arid without dynamic-pressure-rate damping.
The initial flight path angle is +3°, a condition which provides
substantial excitation of the phugoid mode. Dynamic-pressure
rate is fed back to a with a constant gain of 0.04 until
E = 105 ft; at this point, the gain is decreased to allow the
dynamic pressure to build up to meet the terminal flight
condition.

The most significant control change brought about by
trajectory damping is the a pop-up at the beginning of transition.
The initial a is sharply reduced to prevent phugoid excitation;
once the peak altitude is reached, a closely follows the undamped
profile. It can be concluded from this and previous results that
the early maneuver, and not the continuing control, is more
important in preventing large phugoid oscillations. Some oscilla-

No Trajectory Damping
With Trajectory Damping
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Fig. 8 The effects of dynamic-pressure-rate (q') damping on a typical,
guided trajectory. The phugoid oscillation established by initial y of 3° is

reduced when a is modulated by a linear feedback of q.

</>* Azimuth Control and a* Distance Control
Two modifications to E-Guidance can be considered for the

transition phase. The first makes use of the equilibrium relation-
ship between (f> and Ago which exists when Ago is negligible; it is
called 0* azimuth control. The second evolves from the observa-
tion that the optimal a depends largely on path length rather than
path curvature; it is called a* distance control.

The roll angle (/>* is defined by Eq. (31) as
$* = sin~* (-2 sin Ago/Dgo cos2 yCLke~^H) (48)

Computing 0* for the four extreme optimal trajectories presented
in an earlier section, it is found that there is a close similarity
between the optimal roll guidance command and 0*. In general,
the optimal (/> is larger than <j>*, as the best control policy is to
null Ago as the destination is approached rather than to maintain
a constant Ago. Nevertheless, Eq. (48) presents an explicit
relationship between the state variables and the lateral control
variable which need not be generated by numerical optimization;
hence, it provides an attractive alternative to the optimal policy.

<£* azimuth control is compared with the dynamic program-
ing guidance function (t>G(Dgo, Ago, E) for high and low cross-
range in Fig. 9. Azimuth-to-go is kept very nearly constant by
0* control (Fig. 9b), whereas the optimal Ago tends to zero. In
the low cross-range case, however, the minimum miss distance is
0.84 naut miles; as the vehicle flies past its destination, Ago
diverges. Final Dgo for the corresponding (/>* case is 0.03 naut
miles. Ground tracks for the high cross-range case, shown in
Fig. 9a, show that optimality is important as the footprint
boundary is approached. The optimal case reaches the destina-
tion with 0.04 naut mile-error and a specific energy excess of
1346 ft, but the 0* trajectory is 9.3 naut miles from its goal when
the final specific energy is reached. The roll angle profiles which
provide these results are shown in Fig. 9c. Roll angle is limited
to ±45°, and each </>* history reaches the limit. The limits on
the optimal guidance function, $G, are more severe as the end
point is approached; hence, final lateral eror is left uncorrected.
For the low cross-range Case, this causes large error in the
optimal result, while the (/>* function goes to its limit to null the
error. The early </>* profile is inadequate in the high cross-range
test, letting the lateral error build up to an uncorrectable level.
This result suggests that 0* control be revised to explicitly null
the Ago which exists at the beginning of the trajectory. Allowing
Ago to be nonzero, the relationship for <£* becomes

= —sin"1 — sin Ao

., cos2 yk e
(49)

The optimal results indicate that dAgo/d In E is approximately
constant during the transition; hence, choosing Ago to be

Ago = AgJE(lnE0-\nEf) (50)
leads to an Ago profile similar to the optimal high cross-range
case shown in Fig. 9b.

Simplification of the a guidance function proceeds from the fact
that the rate-of-change of path length with respect to specific
energy is independent of Ago; therefore, the energy balance and
ranging control obtained for planar motion are applicable to the
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Fig. 9 A comparison of optimal azimuth control and $*, azimuth
control for high and low cross-range trajectories. The constant ,4go of the
4>*, high cross-range case increases path length to the destination
and, therefore, the energy required. E0 is insufficient to reach the
destination in this case. Low cross-range convergence with constant

A control is very good.

three-dimensional case. Since the time-rate-of-change of path
length-to-go (PLgo) is just - V, Eq. (lib) becomes

Dgo = PLgo cos 7 cos Ago (51)
which, for small y, can be rewritten as

dPLgo = dDgo/cos Ago (52)
Equation (52) can be integrated by taking note of the fact that

or
f dDgo/cosAgo =

i (54)
Taken between the appropriate specific energy limits, this is

the integral form of Eq. (34) when Ago = 0. This result justifies
the use of PLgo as an input parameter for longitudinal control,
but it does not solve the problem of determining PLgo in
real-time; using Eq. (54) to find PLgo requires integration of the
remaining state equations to determine CD and \i as functions of
E. Fortunately, the constant-Ago assumption allows the hori-
zontal flight path to be described by a simple spiral. Equation
(52) is then readily integrated to yield

This relationship is exact for the original <j>* assumption.
Figure 13a illustrates that the path length of the constant-Ago
trajectory is greater than the optimal path length; hence,
Eq. (55) provides a conservative (long) path length estimate for
guidance, a* distance control is then defined by the two-
parameter guidance function

a* = a*(PL80,£) (56)

In summary, E-Guidance evolves from numerical trajectory
optimization through real-time dynamic programing of the two
control variables to </>*, a* control with q' damping. In the final,
simplified form, energy balance and path length control are
obtained by a modulation, which is based on a nonlinear
guidance surface, and linear feedback of the dynamic-pressure
rate. The dynamic programing guidance surface can be obtained
by numerical optimization of the planar case, as only path
length and specific energy determine the angle of attack.
Roll control of cross-range derives from an analytical function
[Eqs. (49) and (50)] which combines E, a (through CL and CD\
and all of the state variables.

Conclusion
Computation of optimal gliding trajectories for the space

shuttle transition is facilitated by making several transformations
to the original, three-dimensional set of dynamical equations.
Introduction of total energy, kinetic energy, and polar position
coordinates leads to a simpler description of the spacecraft's
motion. The change of variables provides a fixed end-point for
the transition trajectory without restricting the final time and
leads to a proportional guidance law (</>* control) for the lateral
state. As presented, the equations also are applicable to terminal
area maneuvering and landing approach, and the equations
could be extended to hypersonic entry with little difficulty.

Numerical results indicate that a wide range of a profiles is
required to fly to representative points within the transition
footprint. If there is any concern for meeting flight path con-
straints without restricting range capability, the concept of a
single a-profile for transition must be rejected. The flight paths
presented here use slow, continuous variations in a; there are,
however, reasons for performing a discrete a-jump during the
space shuttle transition. Static instability motivated a previous
study of such jumps,2 and a recent study of unsteady aero-
dynamics suggests that leeside shock-induced separation, sudden
leading-edge stall, and vortex burst could force such a maneuver
to be reconsidered.5

The concept of dynamic programing provides a rigorous
link between the optimal results and a practical realization for
transition guidance. The a and <j> guidance functions are readily
expressed as three-state hypersurfaces; these can be augmented
by feedback of the remaining two states for trajectory damping.
Dynamic programing in reduced dimension thus forms the
basis for E-Guidance.

The ^-Guidance formulation is further simplified by in-
corporating a near-optimal guidance law for lateral motion
((/>* azimuth control) and by replacing Dgo and A%0 by PLgo in
the angle-of-attack guidance function (a* distance control). Non-
linear, explicit guidance for the space shuttle transition provides
flight paths similar to the optimal trajectories with substantially
reduced computation.
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